在视频压缩中也作为I帧压缩模型经常出现。
Abstract
本文的目标直接就是深度学习与传统算法的 rate-distortion performance gap(失真以PSNR为标准)。主要对熵模型进行了改进,“使用 discretized Gaussian Mixture Likelihoods 参数化 latent code”;此外引入注意力模块提高模型表现。
Intro
传统图像压缩算法 “Typically they rely on hand-crafted creativity to present module-based encoder/decoder (codec) block diagrams.” ?,其变换矩阵、帧内预测、量化、算术编码器等都是确定的。 “In this paper, our main contribution is to present a more accurate and flexible entropy model by leveraging discretized Gaussian mixture likelihoods.”
Related Work
Proposed Method
熵模型部分,受“Joint Autoregressive and Hierarchical Priors for Learned Image Compression”启发用混合高斯取代固定的单个高斯,从而提高模型的表达能力